Hi! Sorry for the delayed response. Here is a part of the log file.
================= CRYOSPARCW ======= 2024-06-05 13:37:47.862834 =========
Project P9 Job J568
Master cryosparc Port 39002
===========================================================================
MAIN PROCESS PID 408904
========= now starting main process at 2024-06-05 13:37:47.863321
motioncorrection.run_reference_motion cryosparc_compute.jobs.jobregister
/opt/cryoem/cryosparc_worker/deps/anaconda/envs/cryosparc_worker_env/lib/python3.10/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for <class 'numpy.float64'> type is zero.
setattr(self, word, getattr(machar, word).flat[0])
/opt/cryoem/cryosparc_worker/deps/anaconda/envs/cryosparc_worker_env/lib/python3.10/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for <class 'numpy.float64'> type is zero.
return self._float_to_str(self.smallest_subnormal)
/opt/cryoem/cryosparc_worker/deps/anaconda/envs/cryosparc_worker_env/lib/python3.10/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for <class 'numpy.float32'> type is zero.
setattr(self, word, getattr(machar, word).flat[0])
/opt/cryoem/cryosparc_worker/deps/anaconda/envs/cryosparc_worker_env/lib/python3.10/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for <class 'numpy.float32'> type is zero.
return self._float_to_str(self.smallest_subnormal)
MONITOR PROCESS PID 408906
========= monitor process now waiting for main process
========= sending heartbeat at 2024-06-05 13:37:48.533150
***************************************************************
Running job on hostname %s cryosparc
Allocated Resources : {'fixed': {'SSD': False}, 'hostname': 'cryosparc', 'lane': 'default', 'lane_type': 'node', 'license': True, 'licenses_acquired': 1, 'slots': {'CPU': [4, 5, 6, 7, 8, 9], 'GPU': [1], 'RAM': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]}, 'target': {'cache_path': '/srv/pcache', 'cache_quota_mb': None, 'cache_reserve_mb': 10000, 'desc': None, 'gpus': [{'id': 0, 'mem': 25438126080, 'name': 'NVIDIA GeForce RTX 3090'}, {'id': 1, 'mem': 25438126080, 'name': 'NVIDIA GeForce RTX 3090'}, {'id': 2, 'mem': 25438126080, 'name': 'NVIDIA GeForce RTX 3090'}, {'id': 3, 'mem': 25438126080, 'name': 'NVIDIA GeForce RTX 3090'}], 'hostname': 'cryosparc', 'lane': 'default', 'monitor_port': None, 'name': 'cryosparc', 'resource_fixed': {'SSD': True}, 'resource_slots': {'CPU': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], 'GPU': [0, 1, 2, 3], 'RAM': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]}, 'ssh_str': 'cryoem@cryosparc', 'title': 'Worker node cryosparc', 'type': 'node', 'worker_bin_path': '/opt/cryoem/cryosparc_worker/bin/cryosparcw'}}
FSC No-Mask... ========= sending heartbeat at 2024-06-05 13:37:58.548081
0.143 at 30.634 radwn. 0.5 at 23.181 radwn. Took 9.783s.
FSC With Mask... ========= sending heartbeat at 2024-06-05 13:38:08.562012
0.143 at 43.136 radwn. 0.5 at 33.117 radwn. Took 9.484s.
<string>:1: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
========= sending heartbeat at 2024-06-05 13:38:18.576437
gpufft: creating new cufft plan (plan id 0 pid 408904)
gpu_id 1
ndims 3
dims 512 512 512
inembed 512 512 514
istride 1
idist 134742016
onembed 512 512 257
ostride 1
odist 67371008
batch 1
type R2C
wkspc automatic
Python traceback:
/opt/cryoem/cryosparc_worker/deps/anaconda/envs/cryosparc_worker_env/lib/python3.10/site-packages/numba/cuda/cudadrv/nvrtc.py:257: UserWarning: NVRTC log messages whilst compiling kernel:
kernel(963): warning #177-D: variable "Nb2p1" was declared but never referenced
warnings.warn(msg)
refmotion worker 0 (NVIDIA GeForce RTX 3090)
scale (alpha): -nan
noise model (sigma2): -nan
TIME (s) SECTION
0.000022994 sanity
3.335733615 read movie
0.000003487 get gain, defects
0.092959357 read bg
0.000102589 read rigid
0.480308550 prep_movie
0.563904728 extract from frames
0.000752688 extract from refs
0.000007184 adj
0.000000130 bfactor
0.013949821 rigid motion correct
0.000165340 get noise, scale
4.487910482 --- TOTAL ---
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
refmotion worker 0 (NVIDIA GeForce RTX 3090)
Min BFGS iterations: 0
Max BFGS iterations: 0
AVG TIME (s) SECTION
0.000000000 Cache IO
0.013677160 Optimize trajectories
0.000628146 Compute cross-validation
0.000091230 Save trajectory
0.014396536 --- TOTAL (Cros-Val) ---
refmotion worker 1 (NVIDIA GeForce RTX 3090)
scale (alpha): -nan
noise model (sigma2): -nan
TIME (s) SECTION
0.000020851 sanity
3.514260015 read movie
0.000002555 get gain, defects
0.006901684 read bg
0.000061118 read rigid
0.476125691 prep_movie
0.380864717 extract from frames
0.000710025 extract from refs
0.000005020 adj
0.000000130 bfactor
0.011862199 rigid motion correct
0.000150081 get noise, scale
4.390964086 --- TOTAL ---
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
refmotion worker 1 (NVIDIA GeForce RTX 3090)
Min BFGS iterations: 0
Max BFGS iterations: 0
AVG TIME (s) SECTION
0.000000000 Cache IO
0.012036821 Optimize trajectories
0.000571479 Compute cross-validation
0.000114661 Save trajectory
0.012722961 --- TOTAL (Cros-Val) ---
========= sending heartbeat at 2024-06-05 13:38:28.590646
refmotion worker 1 (NVIDIA GeForce RTX 3090)
scale (alpha): -nan
noise model (sigma2): -nan
TIME (s) SECTION
0.000011192 sanity
3.505306919 read movie
0.000002966 get gain, defects
0.010982936 read bg
0.000206811 read rigid
0.533659093 prep_movie
0.375072222 extract from frames
0.000598809 extract from refs
0.000007104 adj
0.000000150 bfactor
0.013733693 rigid motion correct
0.000152034 get noise, scale
4.439733928 --- TOTAL ---
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
========= sending heartbeat at 2024-06-05 14:00:30.307391
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
refmotion worker 0 (NVIDIA GeForce RTX 3090)
BFGS iterations: 0
scale (alpha): -nan
noise model (sigma2): -nan
TIME (s) SECTION
0.000010721 sanity
6.209569568 read movie
0.000002124 get gain, defects
0.106970186 read bg
0.000037933 read rigid
0.441303145 prep_movie
1.179054230 extract from frames
0.000747818 extract from refs
0.000009268 adj
0.000000140 bfactor
0.035843484 rigid motion correct
0.000372040 get noise, scale
0.020325226 optimize trajectory
0.456935984 shift_sum patches
0.004998088 ifft
0.016113801 unpad
0.000019267 fill out dataset
0.025494485 write output files
8.497807509 --- TOTAL ---
BFGS problem while attempting to estimate trajectories: (iters: 0, fn evals: 21) ABNORMAL_TERMINATION_IN_LNSRCH
refmotion worker 1 (NVIDIA GeForce RTX 3090)
BFGS iterations: 0
scale (alpha): -nan
noise model (sigma2): -nan
TIME (s) SECTION
0.000010420 sanity
6.584119729 read movie
0.000002254 get gain, defects
0.020686305 read bg
0.000030930 read rigid
0.532058875 prep_movie
0.906994742 extract from frames
0.000502192 extract from refs
0.000003357 adj
0.000000140 bfactor
0.019272647 rigid motion correct
0.000246397 get noise, scale
0.013766236 optimize trajectory
0.314869211 shift_sum patches
0.003252808 ifft
0.010311937 unpad
0.000019067 fill out dataset
0.014941742 write output files
8.421088989 --- TOTAL ---
<string>:1: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
17759899408047537129 (0.045 GiB) -> cache in memory
6338579942102911542 (0.043 GiB) -> cache in memory
17895439457370695783 (0.040 GiB) -> cache in memory
16676411176888399008 (0.044 GiB) -> cache in memory
15049069864001104569 (0.037 GiB) -> cache in memory
11931243749759286639 (0.040 GiB) -> cache in memory
15663738474946531102 (0.024 GiB) -> cache in memory
11085399655876863566 (0.037 GiB) -> cache in memory
14760531268354910877 (0.054 GiB) -> cache in memory
3137158999644402350 (0.049 GiB) -> cache in memory
2584242116799678402 (0.034 GiB) -> cache in memory
17241399646709987481 (0.053 GiB) -> cache in memory
6333405462770530498 (0.041 GiB) -> cache in memory
5065968626686323626 (0.042 GiB) -> cache in memory
37053212132028609 (0.036 GiB) -> cache in memory
2825862036207507820 (0.042 GiB) -> cache in memory
14337212201131067949 (0.046 GiB) -> cache in memory
4875098917682695412 (0.040 GiB) -> cache in memory
8121405977702554561 (0.047 GiB) -> cache in memory
11783317076477610337 (0.033 GiB) -> cache in memory
4871536605908497728 (0.047 GiB) -> cache in memory
11869631441993347766 (0.046 GiB) -> cache in memory
12564191883571071317 (0.004 GiB) -> cache in memory
13558141013104793321 (0.047 GiB) -> cache in memory
11586612311403417194 (0.038 GiB) -> cache in memory
17169740072656081265 (0.050 GiB) -> cache in memory
17688256495867781329 (0.046 GiB) -> cache in memory
433813041761589427 (0.052 GiB) -> cache in memory
12544972823819154874 (0.039 GiB) -> cache in memory
13082398772540685134 (0.037 GiB) -> cache in memory
18061521751409115070 (0.049 GiB) -> cache in memory
7974438742359703571 (0.049 GiB) -> cache in memory
10792707984443117180 (0.048 GiB) -> cache in memory
16233928096160118762 (0.038 GiB) -> cache in memory
16546409167939866318 (0.056 GiB) -> cache in memory
12882832501224248651 (0.035 GiB) -> cache in memory
14334161572565213209 (0.040 GiB) -> cache in memory
3944049454032363101 (0.043 GiB) -> cache in memory
11273910526151665254 (0.035 GiB) -> cache in memory
12946541647311372970 (0.048 GiB) -> cache in memory
13889466711805816244 (0.029 GiB) -> cache in memory
16951008346553708989 (0.050 GiB) -> cache in memory
13879921996192107580 (0.049 GiB) -> cache in memory
18272922326032167209 (0.043 GiB) -> cache in memory
18261558092192269688 (0.038 GiB) -> cache in memory
8905881028513268650 (0.046 GiB) -> cache in memory
18128971698582771728 (0.040 GiB) -> cache in memory
7791381216208083839 (0.035 GiB) -> cache in memory
17183049941020705830 (0.049 GiB) -> cache in memory
3382558405193260716 (0.049 GiB) -> cache in memory
7888425891418398667 (0.043 GiB) -> cache in memory
1544628690901812628 (0.038 GiB) -> cache in memory
2448065133024760531 (0.037 GiB) -> cache in memory
3411261104753748753 (0.025 GiB) -> cache in memory
53271613460935311 (0.040 GiB) -> cache in memory
14063975853710158958 (0.054 GiB) -> cache in memory
11648482015726379064 (0.043 GiB) -> cache in memory
8174804590332892896 (0.053 GiB) -> cache in memory
18149244831418112125 (0.037 GiB) -> cache in memory
5276985052807465670 (0.037 GiB) -> cache in memory
3535155049752180865 (0.031 GiB) -> cache in memory
7355324687906657768 (0.042 GiB) -> cache in memory
6414625393421694093 (0.046 GiB) -> cache in memory
10844778876473744100 (0.034 GiB) -> cache in memory
10558012486122626891 (0.039 GiB) -> cache in memory
12491964733508030720 (0.040 GiB) -> cache in memory
600215084111216693 (0.043 GiB) -> cache in memory
776114183447395061 (0.054 GiB) -> cache in memory
2045795438414411886 (0.035 GiB) -> cache in memory
10889731293925324102 (0.050 GiB) -> cache in memory
9666263895435306574 (0.040 GiB) -> cache in memory
10108310265824559698 (0.037 GiB) -> cache in memory
3540353916464390830 (0.036 GiB) -> cache in memory
14869969952980312027 (0.046 GiB) -> cache in memory
2692406647394684092 (0.044 GiB) -> cache in memory
8223499126913286967 (0.045 GiB) -> cache in memory
3197204831633690521 (0.046 GiB) -> cache in memory
547318657994055369 (0.053 GiB) -> cache in memory
11760556920178836830 (0.050 GiB) -> cache in memory
5284145630995969354 (0.015 GiB) -> cache in memory
4361763239795562531 (0.037 GiB) -> cache in memory
6927758216088118049 (0.048 GiB) -> cache in memory
4320633124972784924 (0.045 GiB) -> cache in memory
902825595680957936 (0.048 GiB) -> cache in memory
8921267222444633088 (0.038 GiB) -> cache in memory
6366073996145615403 (0.045 GiB) -> cache in memory
12148777701408994859 (0.048 GiB) -> cache in memory
7682041139475436935 (0.050 GiB) -> cache in memory
3558005849431273609 (0.039 GiB) -> cache in memory
5342903397584388865 (0.037 GiB) -> cache in memory
955020920483008977 (0.043 GiB) -> cache in memory
15977908966233115461 (0.043 GiB) -> cache in memory
15886038643724476878 (0.053 GiB) -> cache in memory
2853169665936933650 (0.039 GiB) -> cache in memory
2085290006650085983 (0.048 GiB) -> cache in memory
10328774708840113191 (0.045 GiB) -> cache in memory
2504895449701718261 (0.042 GiB) -> cache in memory
651648017212638903 (0.043 GiB) -> cache in memory
15138111384206103191 (0.041 GiB) -> cache in memory
18137358999961898500 (0.054 GiB) -> cache in memory
2280226939266801886 (0.040 GiB) -> cache in memory
10801823503039594973 (0.045 GiB) -> cache in memory
6611733800687920277 (0.037 GiB) -> cache in memory
5319981878311135588 (0.037 GiB) -> cache in memory
15017819343968300616 (0.046 GiB) -> cache in memory
17621057073746265017 (0.042 GiB) -> cache in memory
16031253708068827633 (0.039 GiB) -> cache in memory
21238843451050474 (0.043 GiB) -> cache in memory
14968707496543366874 (0.039 GiB) -> cache in memory
2677579439073709807 (0.040 GiB) -> cache in memory
17806642861127306683 (0.040 GiB) -> cache in memory
1220900522261476807 (0.041 GiB) -> cache in memory
7705832250223220062 (0.038 GiB) -> cache in memory
7632139629640782930 (0.035 GiB) -> cache in memory
7861313695753278902 (0.043 GiB) -> cache in memory
1575078004237444020 (0.032 GiB) -> cache in memory
10131700436896801636 (0.043 GiB) -> cache in memory
7562899840940790984 (0.033 GiB) -> cache in memory
16995215661048920277 (0.043 GiB) -> cache in memory
2254512877192144018 (0.037 GiB) -> cache in memory
16836622511552371372 (0.042 GiB) -> cache in memory
8590297896409488949 (0.044 GiB) -> cache in memory
1754992518901349536 (0.042 GiB) -> cache in memory
842425628018737680 (0.031 GiB) -> cache in memory
2818585104729335786 (0.034 GiB) -> cache in memory
HOST ALLOCATION FUNCTION: using numba.cuda.pinned_array
SEARCH RANGES:
zs:
6.2146
thetas:
-2.0420
-2.1468
-2.2515
-2.3562
-2.4609
-2.5656
-2.6704
r start:
0.1000
r end:
10.0000
r step:
0.6600
***************************************************************
========= main process now complete at 2024-06-05 14:00:37.931890
========= main process now complete at 2024-06-05 14:00:40.320725.
========= monitor process now complete at 2024-06-05 14:00:40.323458.