Alignment of flexible protein

Hi everyone,
I am working on a small membrane protein (25Kda). We have a antibody that specifically bind to a cytosolic loop of the membrane protein. We recently prepared a protein-Fab complex (25+50=75 Kda in total) and collected some data with Krios. I can clearly see the feature of Fab in 2D classification, but the density of membrane micelle looks really smear, doesn’t look like a typical detergent micelle actually:


I also tried some ab initial, the Fab region looks good but I can’t see anything inside the detergent micelle. Also, it seems that the orientation between membrane protein-Fab is very flexible as I can see multiple conformation in ab initial. Is this because of that the particles are not well aligned? Which is due to the inherent flexibility of the complex? Anything I can do to improve it? Any suggestions and questions are welcomed, thank you in advance!
Best,
Yan

1 Like

Hi Yan,
I haven’t worked with membrane proteins, so hopefully someone else comes along that can recognise what’s going on.
However, I’m curious to hear if you purified the Ag-Fab complex before applying it to the grid, such that there should be minimal free Fab on the micrographs. Assuming the splotches next to the well-aligned Fabs are micelles with your Ag, it seems like the same projections of the Fab have the Ag sitting on different sides of your Fab, meaning that the paratope would have to be all over the place.
Fabs always give very strong features in my experience, so actually I would expect to see something like this from a grid with a lot of free Fab and high particle density such that every Fab has neighbours that become diffuse averages in 2D classification. Could you maybe show a motion-aligned, representative micrograph?

Sincerely, Martin

1 Like

Hi Martin,
Thank you so much for your reply. I do purify the Ag-Fab complex by using gel filtration before applying it to the grid. My protein is easily to aggregate, so I used fresh purified, un-concentrated sample and continuous carbon grid.
Yes, you are right: The particle concentration is very high in the raw image:


And although I am using purified complex, I do see some classes that looks like Fab alone at the beginning of 2D classification. This is a little bit confusing to me.
image
For now I am using a relatively big box size to extract the particle (400px, pixel size is 0.84). Should I try to use smaller box size for such crowded sample?
Best,
Yan

Hi Yan,
It’s completely normal that some of the Fab will dissociate during blotting, so seeing some free Fab classes is to be expected. Still great that you are separating out the free Fab before application to the grid, since otherwise the actual Ag-Fab picks would most likely drown in free Fab picks and be distributed like junk.
This might not be the most popular opinion on a processing forum, but personally I would probably try to get new data from grids with a lower protein concentration. Even if you don’t have a lot of particle overlap, and the signal might be there as is obvious from your beatiful Fab 2D class, the processing has gone much more smoothly when I collected new data from grids where I could actually tell by eye where I had particles. Could you try and show a micrograph taken further from focus? Or just a cherry-picked micrograph with a lower particle density?

Are you sure you’re using continous carbon? Since you’re working with quite a small particle, you’ll get very low contrast on continous carbon, so it might be a bit optimistic to use that substrate. Have you tried applying graphene oxide to a holey carbon grid instead?

If collecting new data was out of the question, I would maybe try to group the 2D classes into superclasses using the “Rebalance 2D Classes” job without any rebalancing and then do further 2D classification within the superclasses to see if I could find any ordered signal within the diffuse splotches (preferably for the ones where the diffuse signal is close to the Fab paratope). Like I said, though, I would personally go for new data, so I don’t have a lot of experience working with such crowded micrographs.

It’s possibly that using a smaller box size or just a tighter mask could help a bit, but it already seems like the 2D classes are picking up on the Fab and something else, without much signal from anything further away. Anyway, there are a lot of cases where things are mysteriously improved by changing to box size in either direction and it’s fast to try, so why not…

Sincerely, Martin

1 Like

I agree with @au583982 about collecting new data, unfortunately. I’ve worked with membrane proteins, and this micrograph reminds me very much of when my grids were far too crowded.

Could you let us know what concentration (in nM) you applied to the grids? In my experience, continuous carbon requires orders of magnitude (~100 times) less protein than normal holey carbon (e.g. quantifoil) when working with membrane proteins.

If you do want to go ahead processing this data, it is somewhat concerning to me that the Fab adopts so many different conformations relative to the blob present in the rest of your data. Have you tried ab initio with multiple classes? Could you show us what your ab initio results look like?

1 Like

Hi Martin,
We used focus from -1.5 to -2.5 during data collection. The image I showed you is -2.52, which is already the furthest one from focus. And the particle density is basically same in all the images. I think we have Graphene Oxide on Quantifoil® R1.2/1.3 here, but we haven’t try it yet.
We can definitely try to collect new data, and probably that’s the best way! Maybe we can try to concentrate the protein a little bit and try regular quantifoil grid. But in the meanwhile, I will try what you suggested and see if anything changed.
Thanks again for your help!
Best,
Yan

1 Like

The concentration is about 0.3 mg/mL, which is around 4000 nM. I will definitely try to prepare new grid, using lower concentration for continuous carbon or try regular quantifoil grid.
As you said, it is concerning and I haven’t done too much with ab initial yet, here is 2 classes from about 40k particles:


And I have a naive question: how does crowded images lead to this? I thought it would be difficult to pick particles in very crowded images, but I do see some very clear Fab by itself. Thanks!

Anytime, good luck!

Sincerely, Martin

You’re definitely right that I unfortunately don’t have a great theoretical explanation of how you can pick Fabs if it truly is too crowded. I just remember my ice looking like this before I had dialed in a much lower concentration for my good grids.

Specifically, I am referring to the fact that there are no clear regions of your micrograph which are “empty” or “flat” — basically every region has at least some kind of “texture” to it, and some parts have even more texture. I know this is not very formal, but it’s just my intuition.

One thing I’m noticing is that you still have quite a few particles in each 2D class. I generally try to shoot for ~200 particles per class, or however many my GPUs can handle (typically the latter is the limitation these days). I might try performing classification with as many classes as you can to see if something interesting falls out.

I’d try to keep classes with the “blob” in the same position relative to the Fab, if you can, just to see if there really is structure there. One thing that could be happening is that your grid is so crowded that it’s aligning to whatever nearby high-contrast feature is available and not whatever the Fab has bound.

To speed this process up you can reduce the alignment resolution. You might also consider increasing the Initial Classification Uncertainty Factor, since the Fab will always look the same and we care about the less-ordered stuff nearby.

1 Like